Énoncé 1:

Soit f une fonction dérivable

1) Montrer que : f paire $\Leftrightarrow f'$ impaire

2) Montrer que : f impaire $\Rightarrow f'$ pair. Si de plus f(0) = 0, alors f impair.

Énoncé 2:

En calculant
$$f^{(n)}$$
 avec $f(x) = (x-a)^{2n}$, $a \in \mathbb{R}$, en déduire $\sum_{k=0}^{n} {n \choose k}^2$.

<u>Remarque 1</u>: Cela sous-entend que dans la leçon, vous avez énoncé la formule de Leibniz! Une démonstration de cette formule est d'ailleurs proposée dans les applications de l'exposé 3.

Remarque 2 : Il y a une autre manière de démontrer cette formule. Pour cela je vous invite à regarder les applications de l'exposé n°3.

Corrigé 1:

1) (\Rightarrow) Si f paire, alors f(-x) = f(x). Par dérivation, on obtient -f'(-x) = f'(x) c'est-à-dire f'(-x) = -f'(x).

 (\Leftarrow) Posons $\varphi(x) = f(x) - f(-x)$. On a alors $\varphi'(x) = f'(x) + f'(-x)$.

Or f'est impaire donc f'(-x) = -f'(x).

Ainsi, $\varphi'(x) = 0$ donc φ est constante, autrement dit $\varphi(x) = k, k \in \mathbb{R}$.

Comme $\varphi(0) = 0$, on en déduit que k = 0 puis que f(x) = f(-x).

2) (\Rightarrow) Si f est impaire, alors f(-x) = -f(x). Par dérivation, on obtient -f'(-x) = -f'(x) c'est-à-dire f'(-x) = f'(x)

 (\Leftarrow) Posons $\psi(x) = f(x) + f(-x)$. On a alors $\psi'(x) = f'(x) - f'(-x)$.

Or f' est paire donc f'(-x) = f'(x).

Ainsi, $\psi'(x) = 0$ donc ψ est constante, autrement dit $\psi(x) = k, k \in \mathbb{R}$.

Or $\psi(0) = 2f(0) = 0$ donc k = 0. On en déduit donc que f(-x) = -f(x).

Corrigé 2:

On a
$$f(x) = (x-a)^{2n} = (x-a)^n (x-a)^n$$

On pose
$$u(x) = (x-a)^n$$
 et $v(x) = (x-a)^n$

On a donc
$$u^{(k)}(x) = \frac{n!}{(n-k)!}(x-a)^{n-k}$$
 $v^{(n-k)}(x) = \frac{n!}{k!}(x-a)^k$

On applique alors la formule de Leibniz pour obtenir :

$$f^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} \frac{n!}{(n-k)!} \times \frac{n!}{k!} \times (x-a)^{n} = n \times (x-a)^{n} \sum_{k=0}^{n} {n \choose k}^{2}$$

Or
$$f(x) = (x-a)^{2n}$$
 donc $f^{(n)}(x) = \frac{(2n)!}{n!} \times (x-a)^n$.

On en déduit donc que
$$\frac{(2n)!}{n!} \times (x-a)^n = n \times (x-a)^n \sum_{k=0}^n \binom{n}{k}^2$$
 c'est-à-dire $\frac{(2n)!}{n \times n!} = \sum_{k=0}^n \binom{n}{k}^2$

Or
$$\frac{(2n)!}{n \bowtie n!} = \binom{2n}{n}$$

Ainsi,
$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$