- 1) Puisque $\varphi(Z)$ est un sous-anneau de A qui est un anneau intègre, $\varphi(Z)$ est un anneau intègre donc $\varphi(Z) \approx \frac{Z}{n_A Z}$. On en déduit que $n_A Z$ est un idéal premier de Z et donc n_A est un nombre premier.
- 2) $\mathbb{Z}_{2Z} \times \mathbb{Z}_{2Z}$ est un anneau non intègre de caractéristique 2.
- 3) On a les propriétés : F(1) = 1 et $F(xy) = (xy)^p = x^p y^p = F(x)F(y)$, $\forall (x, y) \in A^2$.

Aussi,
$$F(x+y) = (x+y)^p = x^p + \sum_{k=1}^{p-1} {p \choose k} x^{p-k} y^k + y^p$$
.

Puisque p divise $\binom{p}{k}$, $\forall k \in N, 1 \le k \le p-1$, on en déduit que $F(x+y) = x^p + y^p = F(x) + F(y)$.

F est donc un homomorphisme d'anneau.

Si n_A n'est pas premier, c'est faux. Contre exemple : $A = \frac{Z}{4Z}$, n = 4. On a $\overline{1}^4 + \overline{1}^4 = \overline{2}$ et $(\overline{1} + \overline{1})^4 = \overline{16} = \overline{0}$.

4) a) Puisque $fo\varphi_A$ est un homomorphisme d'anneau unitaire de Z dans B, on sait que $\varphi_B = fo\varphi_A$. Puisque $n_A \in Ker\varphi_A$, on a $n_A \in Ker\varphi_B$ et donc n_B divise n_A .

Supposons f injective. On a donc $x \in Ker \varphi_A \Leftrightarrow \varphi_A(x) = 0 \Leftrightarrow f(\varphi_A(x)) = 0 \Leftrightarrow \varphi_B(x) = 0 \text{ donc } Ker \varphi_A = Ker \varphi_B \text{ et donc } n_B = n_A$.

- b) Si A est un corps, tout homomorphisme d'anneau de A dans B est injectif. En effet, $Ker\ f$ est un idéal d'un corps. C'est donc $\{0\}$ ou A. Or $f(1_A) = 1_B$ donc $Ker\ f \neq A$. On en conclut que $Ker\ f = \{0\}$.
- 5) a) On observe que $\varphi_{A\times B}(m) = m\varphi_{A\times B}(1) = m(1_A, 1_B) = (m1_A, m1_B) = (\varphi_A(m), \varphi_B(m))$. On en déduit que $Ker\varphi_{A\times B} = Ker\varphi_A \bigcap Ker\varphi_B = n_A Z \bigcap n_B Z = ppcm(n_A, n_B)Z$.
- b) Si $p \gcd(m,n) = 1$, on applique 5)a) avec $A = \frac{Z}{nZ}$ et $B = \frac{Z}{mZ}$. On sait que $n_A = n$ et $n_B = m$ donc $n_{A \times B} = ppcm(n,m) = nm$.

 $\widetilde{\varphi}_{\scriptscriptstyle A\times B}$ est injectif. Or $Z/_{mnZ}$ et $Z/_{nZ}\times Z/_{mZ}$ sont de même cardinal mn donc $\widetilde{\varphi}_{\scriptscriptstyle A\times B}$ est bijective.